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We introduce a framework wherein various measurements of a pulse-coupled network’s stationary dynamics
can be expanded in terms of the network’s connectivity. Such measurements include the occurrence rate of
pulses �e.g., firing rates within a neuronal network� as well as higher-order correlations in activity between
various nodes in the network. The various terms in this expansion can be interpreted as diagrams corresponding
to subnetworks of the original network, which span both space �in terms of the network’s graph� as well as time
�in the sense of causality�.
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The study of dynamics on networks is becoming increas-
ingly more relevant within biology. An important subclass of
biological networks is “pulse-coupled” networks, which en-
compass many types of ecological, gene-regulatory, and neu-
ronal networks. What do these pulse-coupled networks do,
and how can we analyze them? This is a perplexing question
whose answer depends on the pulse-coupled network and
dynamic regime under consideration. To begin to answer this
larger question, one must first understand the relationship �or
map� between the architecture of a pulse-coupled network
and certain statistical features of that network’s dynamics—
e.g., the relationship between the input to a neuronal network
�i.e., a specific architectural feature� and the average firing
rate of that network �i.e., a specific dynamical feature�. Typi-
cally, these types of relationships cannot be understood eas-
ily, and theorists and modelers often resort to simulations in
order to probe the properties of these maps. In this paper we
present a framework which takes a first step towards system-
atically linking the dynamics of a general pulse-coupled net-
work to the underlying architecture of that network. Our ap-
proach consists of two majors steps. First, we invoke a weak-
coupling limit to formally expand the evolution operator and
equilibrium distribution for the full network. Second, by us-
ing the evolution operator and equilibrium distribution for
the network, we can construct a series expansion for any
particular dynamical feature of the network �e.g., firing rates
or correlations�. The various terms in the series expansion of
any dynamical feature incorporate successively larger sub-
networks of the original network, thus capturing the specific
architecture of the original network.

To provide a simple example which motivates our ap-
proach, we consider an idealized pulse-coupled network
composed of N nodes �Z1 , . . . ,ZN�, each of which is either
“firing” or “inactive” at any point in �discrete� time. Thus, at
each time the system is in one of 2N possible system states
�s1 , . . . ,s2N�, with each system state si corresponding to a
unique set of firing nodes. This network �which we will de-
scribe below� is similar to the McCulloch-Pitts neuronal net-
works, which have been used to study neuronal network dy-
namics, learning, memory formation, and retrieval �1,2�. We
will assume that the dynamics of this network is Markov, and
that the activity of each node at a given time is only depen-
dent on the system state at the previous time step, and is

independent of the activity of the other nodes at the current
time step. Specifically, given that the system is in state S�t�
=si at time t, we assume that the activity of any node z at
time t+1 is a Bernoulli random variable assuming values of
either 1 �firing� or 0 �inactive�, with probabilities

P�z�t + 1� = 1�S�t� = si� = f��z + 	
a

�zaa�t�

= f��z + 	

a�si

�za
 , �1�

P�z�t + 1� = 0�S�t� = si� = 1 − P�z�t + 1� = 1�S�t� = si�

where f :R→ �0,1� is a monotonically increasing function,
�z is the background input to the node z, and the coupling
coefficient �za is the coupling strength from node a→z. The
sum �a�si

is only over nodes a which are firing within the
state si. Thus, in this simple system, the activation of any
given node at time step t only affects other nodes in the
system during the time step t+1. This system is fully de-
scribed by its state-transition operator L�, which can be writ-
ten as

Lij
� = P„S�t + 1� = si�S�t� = sj…

= �
z
�P„z�t + 1� = 1�S�t� = sj… , if z � si

P„z�t + 1� = 0�S�t� = sj… , if z � si.


Now, given a particular coupling matrix �, how does this
network behave? What sorts of firing events and correlations
will this network produce, and how will the network activity
depend on the vector of inputs �� = ��Z1

,�Z2
, . . . ,�ZN

�T?
For the particular simple example given in Eq. �1�, if we

assume that both �� and � are very small, then by renormal-
izing �� and � appropriately we can assume that f� · � is given
by f� · ���+ � · � up to first order. This involves the assump-
tion that each node fires independently with rate � in the
absence of coupling or input. Using this first-order expres-
sion for f� · �, we can expand the state-transition operator

Lij
� � �i�1 + 	

b

�̃�b,si���b + 	
a

��a,sj��ba� , �2�

where �=1−�, and we have introduced
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��a,s� = 1 if a � s, 0 if a � s ,

�̃�b,si� = + 1/� if a � s, − 1/� if a � s ,

� j = �
a
�� , if a � sj

� , if a � sj .


Throughout the rest of this introduction, we will use Lij
� to

describe a first-order expansion of the dynamics of this net-
work. If the input �� is fixed, then the behavior of the network
is captured by the equilibrium distribution of system states
	�, which is the dominant eigenvector of L� �3�. This equi-
librium distribution is given by

	 j
� = �P„S�t� = sj…�t � � j�1 + 	

b

�̃�b,sj���b + �	
a

�ba
� .

The equilibrium distribution 	�, in combination with the
state-transition operator L�, contains all the information
about the stationary dynamics of the network. For example,
the equilibrium firing rate associated with any node z in the
network �denoted by �z�� can be obtained by appropriately
projecting the equilibrium distribution,

�z� = �P„z�t� = 1…�t = 	
j

��z,sj�	 j
� � � + �z + �	

a

�za.

�3�

These firing rates are exactly what one would expect from a
mean-field approach—the average input to node z is equal to
�z+�	a�za �where we assume every other node in the net-
work fires at rate ��. Since we know both 	� and L�, we can
also compute higher-order statistics, such as correlations be-
tween firing events within this network. As an example, let
us denote by y→z the event that node z fires one time step
after node y, and let �y→z� denote the observation rate �in
equilibrium� of these events. This can be computed as fol-
lows:

�y → z� = �P„z�t + 1� = 1,y�t� = 1…�t

= 	
i,j
��z,si���y,sj�Lij

�	 j
� � �y��z� + ���zy , �4�

implying that the correlation �y→z�− �y��z� between the ac-
tivity of the two nodes y and z is proportional to �zy.

Working within this framework, we may ask how these
particular dynamic observables shift as we perturb the input.
Given any Markov system, we know that if the state-
transition matrix L changes to L+
L� then to first order in 

the equilibrium distribution 	 shifts to 	+
	�, satisfying the
equation

�L + 
L���	 + 
	�� = 	 + 
	�, �I − L�	� = L�	 .

Now we should note that the matrix �I−L� is a square 2N

�2N matrix with column sums equal to 0, and thus is not
invertible. The column space of �I−L� is perpendicular to the
vector e= �1, . . . ,1�. Fortunately, the column sum of L� is
also 0 �since L+
L� must be a stochastic matrix�, and the
only component of 	� we are interested in is the component
perpendicular to e, since we can always assume that the ei-

genvector 	+
	� is normalized to have sum 1. Thus, �I−L�
can be viewed as a linear operator from e� to e�. For the
simple system described in Eq. �2� such an inverse exists,

��I − L��−1�ij � �ij + 2−N + Lij
�.

Using this inverse we can readily calculate the shift in the
equilibrium firing rates of the system with respect to changes
in the input �� . This firing-rate shift is given by the derivative

��y
�z� = 	

j

��z,sj���y
	 j

� � �yz + �yz.

Note that this expression cannot be obtained by simply tak-
ing a derivative of the first-order terms shown in Eq. �3�, as
higher-order terms come into play when computing ��y

	 j. An
immediate consequence of this calculation is that, to first-
order, the infinitesimal shift in �� which gives rise to the
greatest �Euclidian� shift in the equilibrium firing-rate vector
for the system �i.e., the change in input to which the system
is most responsive� is given by the first right singular vector
of the matrix �I+��, which is equivalent to the dominant
eigenvector of the symmetric matrix ��+�T�. In a similar
fashion, we can compute the shift in correlations with respect
to changes in input,

��z
��y → x� − �y��x�� � �� − ���zy�xy − �yz��x� − ��

− �xz��y� − �� .

In the simple example described above, the relationship
between the architecture of the network �i.e., �� and �� and
the dynamics of the network �e.g., �z�, �y→z�, ���z�, etc.�
depends strongly on the state-transition matrix L�, and the
equilibrium distribution of system states 	�. Using first-order
approximations to L� and 	� limits us to first-order approxi-
mations of �z� and �y→z�. It is natural to ask if this approach
can be generalized—can higher-order contributions to vari-
ous dynamic observables be systematically computed?
Moreover, can these same techniques be applied to more
realistic systems, such as the types of neuronal networks
typically used in large-scale computational modeling? Within
the rest of this paper we will show that, indeed, this frame-
work can be generalized to any order for a very large class of
pulse-coupled networks. The key elements of this framework
will be an approximation to L�, an approximation to 	�, and
an approximation to �I−L��−1.

The basic idea underlying our framework is as follows.
By describing the internal dynamics of each node appropri-
ately, a pulse-coupled network can be reduced to a Markov
system �3�. If the dynamics of each node is ergodic, and the
coupling is sufficiently weak, then the dynamics of the net-
work will be ergodic, and there will be a unique time-
averaged distribution of system states 	�, which will depend
on the system’s architecture �i.e., the dynamics associated
with each node, the external input to each node, and the
coupling between nodes�. Note that 	� can also be inter-
preted as the distribution of system states in an ensemble
average. Given 	�, we can compute various projections of
the system’s dynamics, such as the system’s firing rate.
Higher-order statistics, such as event-chains �4� and two-
point correlations require understanding 	� as well as the
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state-transition operator L� for the system. In practice, pre-
cisely determining 	� as well as L� for a complicated net-
work is not feasible. Note, however, that if there is no cou-
pling between nodes then the state-transition operator can be
obtained by taking the direct product of several uncoupled
single node state-transition operators, and the distribution 	�

is simply the direct product of the uncoupled single node
equilibrium distributions. In what follows we derive a formal
expansion �with respect to coupling strength� of the distribu-
tion 	� �as well as various projections of the system’s dy-
namics� for a large class of heterogeneous and topologically
distinct pulse-coupled networks. Due to the pulse-coupling
between different components of the network, the terms of
this expansion each can be interpreted as a particular flow of
information within different subnetworks of the full network.
Using this expansion we can derive several useful relation-
ships, and analyze pulse-coupled networks in a new way.

I. DISCRETE-TIME FINITE-STATE
SUBNETWORK EXPANSION

For the purposes of discussion, we will define a pulse-
coupled network as follows. A pulse-coupled network con-
sists of a directed graph amongst several nodes, with each
node possessing its own internal dynamics. The nodes evolve
independently from the rest of the network, except for in-
stantaneous pulses or “firing events,” which are generated
when any one node reaches a specified set of states—at
which point there is an effect on other nodes in the network
to which the firing node is connected. We will assume that
the state space of each node has been appropriately expanded
so that the effects of a pulse are instantaneous. Specifically,
we assume that the dynamics of each node within the net-
work differs from the uncoupled dynamics associated with
that node only at times which correspond to firing events.
This restriction is not severe, and many biologically relevant
pulse-coupled networks fall into this framework.

Some previous work on pulse-coupled systems, such as
�5,6�, assumes that the system is deterministic, and that the
dynamics reach a fixed point �which may depend on the
system’s initial conditions�. With these assumptions, their
work then analyzes the basins of attraction �with respect to
initial conditions� of each of these fixed points. However,
there are many pulse-coupled systems, such as neuronal net-
works within the mammalian visual cortex, which never at-
tain a steady state, and which perpetually drift between a
variety of states even when driven by constant input �or
while in background� �7–9�. In this paper we will focus on
this second type of system. We assume that the dynamics
produced by the network �even under constant input� does
not settle to a steady state, but instead involves an ongoing
sequence of different system states. We also assume that
there are some statistical features of the dynamics �such as
firing rates or correlations in the activity of different nodes in
the network�, which are relevant either for observers, or for
controlling the dynamics of downstream networks.

Many previous attempts to link the architecture and dy-
namics of pulse-coupled networks, such as the kinetic theory
of neuronal populations �10–16� and recent field-theoretic
techniques �17,18�, typically assume that �a� the number of

network nodes is large, �b� the uncoupled dynamics of each
node is the same, and �c� the coupling between nodes is
statistically homogeneous. However, many real pulse-
coupled networks are not very large, and possess particular
heterogeneous composition and connectivity �e.g., the net-
work may be composed of various types of nodes with dif-
ferent internal properties, which are sparsely coupled to-
gether with nonuniform coupling strength�. The framework
we introduce is capable of addressing these network-specific
details.

In what follows we will derive the diagrammatic expan-
sion used later in the paper. For ease of presentation we will
discuss a discrete-time, finite-state version of a conductance-
based integrate-and-fire neuronal network �19–27�, for which
it is clear where each term in the expansion originates. Note
that the extension to continuous time and infinitely many
states is relatively straightforward �although more difficult to
numerically implement and test�, and will be briefly dis-
cussed later. Within this finite-state network, each node rep-
resents a neuron, and each firing event represents a “spike”
or neuronal action potential. Assume that a given neuron, say
Z, can be in one of m voltage states, and one of n conduc-
tance states. If the voltage reaches the final mth voltage state
�the threshold voltage�, we say the neuron “fires” �affecting
other neurons in the network�, and the voltage is forced to
reset to the first voltage state �the reset voltage� in the next
time step. Thus at each point in time the neuron is in one
�and only one� of s=mn possible states, which we enumerate
with the indices iZ

V� �1, . . . ,m� and iZ
G� �1, . . . ,n� �collec-

tively referred to as iZ� ��1,1� , . . . , �m ,n���. We also assume
that each neuron is driven by some input �Z�R, which
could depend on Z, but which does not depend on time
�many types of time-varying input can be accounted for by
appropriately increasing the state space of each individual
neuron�.

A. State transition matrix

In the absence of input from other neurons in the network,
the discrete-time evolution of neuron Z is governed by some
s�s state-transition matrix L��Z�. The entry Lij equals the
probability that the neuron Z transitions from state j to state
i in one time step, given an input �Z at the start of that time
step. In other words, if S�t� is the state of the neuron Z at
time t, then Lij��Z�= P(S�t+1�= i �S�t�= j , and input �Z).
We will place two restrictions on the transition matrix. The
first restriction ensures that the system behaves like an
integrate-and-fire neuron �i.e., when the voltage reaches a
threshold it is forced to reset to a lower value �22,26��. We
enforce this restriction by requiring that Lij =0 whenever jV

=m and iV�1. The second restriction we place on the state-
transition matrix is that L should “mix” �i.e., have a unique
eigenvector 	 of eigenvalue 1�. This second restriction en-
sures that our subnetwork expansion for 	� �detailed below�
will be asymptotically accurate in the weak-coupling limit
�3�.

We now use the state-transition matrix for individual neu-
rons to build the state-transition matrix for a network of N
neurons. As mentioned earlier, we assume that the network
of neurons is pulse coupled, meaning that neurons only affect
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one another when they fire. This assumption is critical for
this particular framework, but is a very reasonable one. We
use the multi-index i�= �iZ1

, iZ2
, . . . , iZN

� to reflect the state of
the network, implying that Zl is in state iZl

= �iZl

V , iZl

G�. The sN

�sN transition matrix for the network is given by the product
of N single-neuron state-transition operators �of the form
Lizjz

�, each dependent on the state of the other neurons in the
network

Li�j�
� = P„S�t + 1� = i��S�t� = j�…

= �
z

Lizjz��z + 	
w

�zw��iw
V,1� jw

V,m�
 , �5�

where S�t� is the state of the system at time t, and the entry
�zw of the connectivity matrix ��RN�N specifies the effect
of a spike from neuron w on neuron z. The pulse coupling is
encapsulated by the product of Kronecker deltas �iw

V,1� jw
V,m,

which reflects the fact that neuron w only affects neuron z
during a step in which neuron w is transitioning from thresh-
old to reset �i.e., a step in which w fires�. At this point, if we
could simply find the equilibrium distribution 	� associated
with L�, we would have “solved” for the system’s dynamics,
and we could then measure a variety of quantities, such as
firing rates, at our leisure. Unfortunately, even though we
may be capable of solving the s�s eigenvalue problem as-
sociated with L, the sN�sN eigenvalue problem associated
with L� is typically impossible, even for moderate values of
m ,n ,N. In what follows, we will form an expansion for L�

�in terms of the coupling strength ��, which will allow us to
approximate 	� without solving the eigenvalue problem as-
sociated with an N-neuron eigensystem.

We can Taylor-expand Eq. �5� in terms of the coupling
strength � as follows:

Li�j�
� = �

z
�Lizjz

��z� + 	
p=1

p=
1

p!
��

pLizjz
��z��	

w

�zw��iw
V,1� jw

V,m�
p� .

Now, we introduce the following notation:

Lz = Lizjz
��z�, Lz

�p� = ��
pLizjz

��z� ,

Fw = Fiwjw
= ��iw

V,1� jw
V,m� ,

and note the equality

�	
w

Fw�zw
p
= 	˜ M�p,�q����

�

Fw�
��zw�

�q�, �6�

where the sum �̃ is taken over all subsets of unique neurons
�w�� and sets of positive integers �q��, such that ��q�= p.
With this notation one can think of z as a “receiver” and
consider each term of Eq. �6� as involving ��q��� “transmit-
ter” neurons �w�� �each considered with multiplicity q��. The
symbol M�p , �q��� refers to the number of ways to choose
��q��� uniquely defined elements with multiplicities q1 ,q2 , . . .
out of p identical sets of N elements. Using Eq. �6� we can
write L�=L�0�+L�1�+¯, where the Mth order term L�M� in-
volves a sum over subnetworks,

Li�j�
�M� = 	˜ �1���

�,�
M�p�,�q�

�����
z�w

�
�

q�
� �

���
�

1

p�!
Lz�

�p�����
�,�

Fw
�
��� �

y��z��
Ly� , �7�

where the sum �̃�1� is taken over all subsets of unique neu-
rons �z��, �w�

�� and sets of positive integers �p��, �q�
�� such

that ��p�=M, and ��q�
�= p�. Each term in this Mth-order

sum corresponds to some set of ��p����M unique receiver
neurons �z�� each considered with multiplicity p�. The index
� is used to label the receiver neurons. Each receiver z�
corresponds to ��q�

���� unique transmitter neurons �w�
���, each

considered with multiplicity q�
� �the subscript on �q�

��� and
�w�

��� is added for clarity—to imply that the sets are to be
considered with index � varying, and index � fixed�. The
index � is used to label the transmitter neurons associated
with any particular receiver z�. Note that in this particular
form of the expansion, multiplicity amongst receivers is dis-
allowed �i.e., each z� is unique�; however multiplicity
amongst transmitters is allowed �i.e., the same w can be in
set �w�

1� as well as in set �w�
2�, thus implying that the con-

nections �z1w and �z2w are being simultaneously considered�.
Note also that, as L�M� is associated with only a single time
step, the effects of each transmitter are considered simulta-
neously. The sets �z��, �w�

�� along with their multiplicities
define a subnetwork of the original network of N neurons,
and the corresponding term of L�M� describes the Mth-order
effect of this subnetwork on the state-transition matrix of the
full system �see Figs. 1 and 2 for examples of various sub-
networks and their graphical representations�.

To clarify the rest of the presentation, we will let “·” de-
note the standard matrix product �whenever there is confu-
sion�, and we will use the symbol “�” to denote a matrix
direct product. The direct product involves a “nestling” or
“interlacing” of matrices—given a pA�qA matrix A and an
pB�qB matrix B, the pApB�qAqB matrix C=A � B is given
by C�i,k�,�j,l�=AijBkl, where �i ,k� and �j , l� are both multi-
indices. Note that we could choose some index ordering,
such as �= i+ pA�k−1� and �= j+qA�l−1� and define C�� with
respect to standard indices, but this requires an essentially
arbitrary ordering of dimensions, and will have no impact on
our results. Note that �A � B� � C=A � �B � C�, A � �B+C�
=A � B+A � C, and �if A and B are both invertible�
�A � B�−1=A−1 � B−1. Note, however, that �I � I−A � B�−1

� �I−A�−1 � �I−B�−1, which will become important later �see
Eq. �10��. With this notation we present some special cases
of Eq. �7�, such as

Li�j�
�0� = �

z

Lizjz
= �

z

Lz,

which is the simple direct product of individual uncoupled
state matrices, and �writing L�=��L�

L�1� = 	
z,w distinct

�zwLz� � �FR · Lw · FT� �
y�z,w

Ly

+ 	
z

�zz�FR · Lz� · FT��
y�z

Ly , �8�
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which consists of first-order contributions from w to z in
addition to the effect of autapses �i.e., direct connections
from a neuron to itself�. In Eq. �8� we have introduced the
notation

Fij
R = �ij�iV,1, Fij

T = �ij� jV,m

to disambiguate the element-wise product Lizjz
Fizjz

from a
matrix product �note that the only nonzero entries of the s
�s matrices FRLFT and FRL�FT are the “firing blocks” of the
matrices L and L�, respectively�. As another example, the
term L�2� includes 11 topologically different types of subnet-
works �see Fig. 1� ranging from pairs of distinct first-order
contributions to second-order contributions from autapses.

B. Equilibrium distribution

The eigenvector 	� of L� with eigenvalue 1 corresponds
to the equilibrium distribution of the network—	 j�

� can be

interpreted as the probability that the system is in state j� at a

randomly chosen time, or that a particular system chosen out
of an infinite ensemble is in state j� �3�. Determining 	� will
allow us to compute several useful quantities, such as, say,
the firing rates of individual neurons. Once we have an ex-
pression for L�M�, we can determine the distribution 	� order
by order �i.e., 	�=	�0�+	�1�+. . .�. The 0th order term 	�0� is
given by

	 j�
�0� = � 	z,

where 	z=	 jz
is the single-neuron distribution corresponding

to Lz �i.e., the eigenvector of Lz with eigenvalue 1�. We know
that L�0�	�0�=	�0�, but determining 	�M� is slightly more diffi-
cult. Here we write out a formal expansion for 	�M� in terms
of 	�0� and the elements of Eq. �7�,

L� · 	� = 	� ⇒ �I − L�� · ��M�0	
�M�� = �M�0L�M� · 	�0�.

�9�

We note that �I−L�� is not invertible �as 	� is in the null
space�. However, every other eigenvector of L� has an ei-
genvalue less than 1, and so �I−L��−1 is well defined on the
right eigenspace of L�, which excludes 	�. It is easy to show
that this eigenspace is e�, where e is the vector of all 1’s
�indeed, since the column sums of L� are equal to 1, eT is a
left eigenvector of L�, and we have that eT�=eTL��
=�eT� for any right eigenvector L��=���. Thus, it is rea-
sonable to treat �I−L��−1 as an operator from e�→e�. An
appropriate expansion of �I−L��−1 is given by

�I − L��−1 = � 	
M�0

	˜ �2��
�

G · L�r��� · G , �10�

where the sum �̃�2� is taken over all sets of positive integers
�r�� such that ��r�=M, and the operator G is given by

G = �I − L�0��−1:e� → e�,

�note that Span �L�r���e� for r�0�. Combining Eqs. �9� and
�10� yields

z z
w

z
w

z

w1w 2

1z z2 1z z2 1z z2

z

w

1

1

z2

w2

z

w

z1 2

1z z2

w
1z z2

w

FIG. 1. �Color online� Examples of subnetworks used for ex-
panding L�M�, as described in Sec. I A. �Upper three rows� Dis-
played are 11 topologically distinct subnetworks associated with
different terms in the subnetwork expansion of L�2�. Each subnet-
work is composed of up to two receiver neurons �indicated by “Z”�
and up to two transmitter neurons �indicated by “W” if they are
distinct from the receivers�. The degree p� associated with receiver
Z� is equal to the number of arrowheads pointing at Z�. The degree
q�
� associated with the transmitter-receiver pair W�

� ,Z� is equal to
the number of arrowheads on the arrow connecting W�

� to receiver
Z�. Starting from the upper left corner and reading from left to
right, the subnetworks correspond to �p1=2,q1

1=2,Z1=W1
1�, �p1

=2,q1
1=q2

1=1,Z1=W1
1�, �p1=2,q1

1=2�, �p1=2,q1
1=q2

1=1�, �p1= p2

=1,Z1=W1
2 ,Z2=W1

1�, �p1= p2=1,Z2=W1
2 ,Z2=W1

1�, �p1= p2=1,Z2

=W1
2 ,Z1=W1

1�, �p1= p2=1,W1
2=W1

1�, �p1= p2=1,Z1=W1
2�, �p1= p2

=1,Z2=W1
2�, and �p1= p2=1�, respectively, where neurons with dis-

tinct labels are assumed distinct unless otherwise specified. �Lower
four rows� Displayed are 20 topologically distinct subnetworks as-
sociated with different terms in the subnetwork expansion of L�3�.
Only subnetworks excluding autapses are shown. The direction and
number of arrowheads are sufficient to specify the role of each of
the neurons �indicated by circles�.
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w
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1 1z
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w1
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1z

w 1
1

1
1 1z w

FIG. 2. �Color online� Examples of multistage subnetworks used
for expanding 	�3�, as described in Sec. I A. �Left� Displayed is the

two-stage subnetwork associated with the terms 	̃ and �b�˜ described
in Sec. I C. The first stage is colored dark gray �blue online�, and
the second stage is colored light gray �red online�. Each stage � of
this subnetwork involves a set of receivers and transmitters �de-
noted by �Z�

��� and �W�
�,���,�, respectively�. The degree p�

� of every
receiver Z�

� is equal to the number of arrowheads pointing into Z�
�,

and the degree q�
�,� of every transmitter-receiver pair W�

�,� ,Z�
� is

equal to the number of arrowheads on the arrow connecting the pair.
The stages span time in the sense of “causality” since the contribu-
tion to 	̃ coming from stage 1 involves the correction associated
with stage 2. �Right� Displayed is the three-stage “loop” subnet-
work described in Sec. I C. The first, second and third stages are
different shades of gray, and are colored online blue, red, and green,
respectively.
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	�M� = �	˜ �2�G · L�r��� · 	�0�, �11�

where again the sum �̃�2� is taken over all sets of positive
integers �r�� such that ��r�=M. Each term in the sum can be
interpreted as consisting of t= ��r��� stages, with each stage �
involving r� transmitter-receiver pairs �counted with multi-
plicity�. Because the effects of each transmitter associated
with stage � are considered simultaneously, one can consider
a t-stage term as consisting of t unique firing times. Once we
finish discussing a representation for G, we will return to Eq.
�11� and interpret the terms that arise �see Eq. �13��.

Before we write down the operator G�CsN�sN
, we first

solve for Gz= �I−Lz�−1 :e�→e� �where Gz�Cs�s acts only
on the neuron z�. We diagonalize Lz=�z ·�z ·�z

−1 �where the
diagonal matrix �z=diag��z�, and �1

z =1 and �real�� j
z���1

for j�1�, and write

Gz =�z · diag��z� ·�z
−1,

where diag��z�= �I−�z�−1 is the standard pseudoinverse of
�I−�z�, given by

�z = �0,
1

1 − �2
z ,

1

1 − �3
z , . . . ,

1

1 − �s
z� .

In a similar fashion we can now define

G�z�� = �I − �
�

Lz�
�−1 = ��

�
�z�

� · diag���z��� · ��
�
�z�

−1� ,

for any set of neurons �z��, where, ��z��= �I− ���z�
�−1 is

the appropriate pseudoinverse �note that, with this notation,
G=G�Z1,Z2,. . .,ZN��. While not all that practical for actual com-
putation, the previous representation of G can be used to
derive two important equalities, which we will use later to
reduce the dimensionality of expressions involving G,

G�z�� · �	z1
� �� = 	z1

� �G�z����1
· �� ,

�eT
� �T� · G�z�� = eT

� ��T · G�z����1
� , �12�

both of which are true for any s��z���−1 element vector �, as
long as ��z����2.

Now we can rewrite Eq. �11� in a more descriptive man-
ner,

	�M� = 	˜ �3���
�,�

M�p�
�,�q�

�,�����
�

�
z
�
�w

�
�,�

q�
�,� � · �

�
�G · �I

�
�,�

Fw
�
�,�

R � · ��
�

1

p�
�!

L
z
�
�

�p�
�� �

a��z�
���

La� · �I�
�,�

Fw
�
�,�

T �	�0� ,

�13�

where the sum �̃�3� is taken over all sets of positive integers
�r��, �p�

��, and �q�
�,��, and all sets of neurons �z�

��, �w�
�,�� such

that ��r�=M, ��p�
�=r�, and ��q�

�,�= p�
�. To recapitulate,

each of the terms in Eq. �13� can be interpreted as a subnet-
work of t= ��r��� stages, spanning both space and “time” �in
the sense that a t-stage subnetwork involves t distinct spike
times�. The index � is used to label the distinct spike times.
Each stage � corresponds to some set of ��p�

����r� unique

receiver neurons �z�
��� each considered with multiplicity p�

�.
The index � is used to label the receivers associated with any
particular stage �. Each receiver z�

� corresponds to ��q�
�,����

unique transmitter neurons �w�
�,��� each considered with

multiplicity q�
�,�. The index � is used to label the transmitters

associated with any particular receiver z�
�. The sets �z�

��,
�w�

�,�� along with their multiplicities define a subnetwork of
the original network of N neurons, and the corresponding
term of 	�M� describes the Mth-order effect of this subnet-
work on the eigendistribution of the full system. It is impor-
tant to note that no homogeneity has been assumed in the
derivation of Eq. �13�. The internal dynamics Lz associated
with each neuron, as well as every element of the connectiv-
ity matrix �, are treated independently.

As a specific case, let us examine a particular term within
the expression for 	�3� which corresponds to a two-stage 3rd-
order subnetwork with r1=2, r2=1, p1

1=2, q1
1,1=1, and q2

1,1

=1 �and consequently p1
2=1, q1

1,2=1�, for which the set
�z1

1 ,w1
1,1 ,w2

1,1 ,z1
2 ,w1

2,1� contains distinct elements, with the
exception that w2

1,1=z1
2. To simplify notation, let us rename

the transmitters and receivers �z1
1 ,w1

1,1 ,w2
1,1 ,z1

2 ,w1
2,1� to be

�z ,a ,y ,y ,c�. This term �say, 	̃� corresponds to

	̃ = 2�za�zy�ycG · �1

2
Lz� � FRLaFT

� FRLyF
T

�
x�z,a,y

Lx� · G · �Ly� � FRLcF
T �

x�y,c

Lx� · 	�0�,

which �using Eq. �12�� can be reduced to

	̃ = �za�zy�ycG�z,a,y,c� · �Lz�	z � FRLaFT	a � ��FRLyF
T

� Lc� · G�y,c� · �Ly�	y � FRLcF
T	c��� �

x�z,a,y,c

	x. �14�

The interior term G�y,c��Ly�	y � FRLcF
T	c� in Eq. �14� repre-

sents the first-order correction to 	�, resulting from incorpo-
rating the effects of neuron c firing on the dynamics of neu-
ron y �as if c were uncoupled from the network�. Note that
the term FRLcF

T	c picks out the component of 	c that flows
over threshold in one time step. The full term shown in Eq.
�14� represents the third order correction to 	� resulting from
correcting the dynamics of neuron z by incorporating the
effects of neuron a �firing as if uncoupled� as well as the
corrected effects of neuron y �whose firing is corrected by
incorporating the effects of neuron c�. We can interpret the
term 	̃ as a correction involving two subnetworks—the first
involving c affecting y, and the second involving a and y
affecting z �see Fig. 2�. It is worth noting at this point that the
utility of the subnetwork expansion comes from �a� the fact
that neurons only influence each other when in a select few
states �so that the coupling term �iw

V,1� jw
V,m is quite simple�,

and �b� the equalities given in Eq. �12� allow us to solve for
terms involving various subnetworks without considering the
entire system. Indeed, the expression for 	̃ given in Eq. �14�
is effectively quite low dimensional—involving a four-
neuron subsystem �z ,a ,y ,c� interlaced with N−4 uncoupled
neurons �x�x�z,a,y,c. Note that terms involving G�z�� with
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��z����1 can be further reduced to a series of single-neuron
operators, as described in Appendix B.

It is important to point out that the validity of this expan-
sion hinges on the assumption that the spectrum of L����
admits a single unique eigendistribution of eigenvalue 1,
which varies smoothly as the coupling strength � is in-
creased away from 0. Validating this assumption �which is
stronger than merely requiring ergodicity of L� for a particu-
lar �� is beyond the scope of this paper. Nevertheless, it
should be noted that if this assumption is violated �e.g., when
a network exhibits bistability�, then the results computed us-
ing the subnetwork expansion may not correspond to an ob-
servable solution, and should be interpreted with care.

C. Projections of the equilibrium distribution

Once we have an approximation to 	�, we can approxi-
mate several important features of the system by projecting
	� in various ways. For example, we can determine the firing
rate of any neuron b �denoted by �b�� by computing

�b� = �eb
TFb

T �
x�b

ex
T� · 	�, �15�

where, for clarity, we use the subscript b on eb
T, Fb

T and x on
ex

T to indicate that the operator acts on the indices associated
with neuron b, x, respectively �when the indices are obvious
we will omit these subscripts�. Obviously, since ex

T	x=1 for
every x, we have that

�b��0� = eb
TFb

T	b = fb
T	b

is the uncoupled firing rate of neuron b �where we have
introduced fT=eTFT=�iV,m�. In addition, since Span �L��,
span �FRL�FT��e�, eTFRLFT= fT, and fTFRL�FT=0, we
have that

�b��1� = 	
z�b

�bz�fb
TGbLb�	b��fz

T	z� + �bb�fb
TGbFRLb�F

T	b� ,

�16�

implying that, to first order, only direct synapses onto b af-
fect the firing rate of b. With the possible exception of the
autapse term, these two results can be obtained from a mean-
field theory. Notably, however, our framework allows us to
systematically expand the projection �b� to higher order. As

an example, the contribution �b�˜ to �b��3� arising from the
two-stage 3rd-order term 	̃ �shown in Eq. �14�� is 0 unless
b=z, in which case we have

�b�˜ = �fz
T�

x�z

ex
T�	̃ = �za�zy�yc�fz

TGzLz�	z�

��fa
T	a��fy

TGyLy�	y��fT	c� ,

which is a product of four scalars, each of which can be
formed by considering an uncoupled single neuron. It is im-

portant to note that, while typical, �b�˜ is not representative of
every subnetwork contributing to �b��3�. For example, the
three-stage 3rd-order “three-element loop” subnetwork �see
Fig. 3� corresponding to r1=r2=r3=1, for which the set
�z1

1 ,w1
1,1 ,z1

2 ,w1
2,1 ,z1

3 ,w1
3,1� contains three distinct elements,

and w1
1,1=z1

2, w1
2,1=z1

3, and w1
3,1=z1

1, corresponds to the con-
tribution

���fy
T

� fz
TGzLz��Gyz�Ly� � Lz�� � fx

T� ,

�	y � Gzx�FRLzF
T	z � Lx�	x�� ,

where we have relabeled �z1
1 ,w1

1,1 ,z1
2 ,w1

2,1 ,z1
3 ,w1

3,1�
= �z ,y ,y ,x ,x ,z�, and assumed that b=z �otherwise the con-

Network

0th-order 1st-order

2nd-order 1-stage 2nd-order 2-stage

3nd-order 1-stage 3nd-order 2-stage

3nd-order 3-stage

A

B C

D

E

FIG. 3. �Color online� Examples of multistage subnetworks used
for expanding �b��0�, �b��1�, �b��2�, and �b��3�, as described in Sec.
I C. �a� Displayed is a specific network. Neurons are indicated by
circles and connections are indicated by solid black arrows. In the
rest of this figure we demonstrate the subnetwork expansion asso-
ciated with the firing rate of the central neuron in this network
�denoted by �b��. The diagrams used to denote subnetworks are
described in Fig. 2. The first, second, and third stages are shown in
different shades of gray, which are colored online blue, red, and
green, respectively. �b� The subnetworks contributing to �b��0�. Note
that only the neuron b itself is included. �c� The subnetworks con-
tributing to �b��1�. Note that b must be the receiver. �d� Sample
subnetworks contributing to �b��2�, grouped into one-stage subnet-
works and two-stage subnetworks. �e� Sample one-stage, two-stage,
and three-stage subnetworks contributing to �b��3�. The three-stage
subnetwork topologically equivalent to Fig. 2�b� is in the bottom
right corner. Note that each t-stage subnetwork only includes neu-
rons that can be connected to b in t steps or less. Thus, no t-stage
subnetwork will include the neurons on the right side of the
network.
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tribution is 0�. This contribution is the inner product of two
vectors, each of dimension s3 �note, however, that the highest
dimensional linear operators involved in this expression are
Gyz ,Gzx, which each correspond to systems of two uncoupled
neurons�.

There are many other useful projections of 	�, other than
firing rate. For example, we may try and determine the dis-
tribution of states associated with a particular neuron b in the
presence of the network �denoted by 	b

��, by computing

	b
� = �Ib �

x�b
eT�	� = 	b + 	

w�b

�bw�GbLb�	b��fw
T	w�

+ �bb�GbFRLb�F
T	b� + O��2� .

We may also be interested in the distribution of a particular
neuron b, conditioned on another neuron a firing �denoted by
	b�a fires

� �. Such a projection can be computed via

	b�a fires
� =

1

�a�
�fa

T
� Ib �

x�b,a

eT�	�,

which immediately allows us to write

�a��	b�a fires
� − 	b

�� = + �ba�Ib � fa
T�Gba�Lb�	b � FRLaFT	a�

− �ba�GbLb�	b��fa
T	a��fa

T	a� + �ab�fa
T

� Ib�Gab�La�	a � FRLbFT	b�

− �ab�fa
TGaLa�	a��fb

T	b�	b + O��2� .

This expression implies that even though �to first order� the
distribution 	b

� depends on the entire connectivity matrix �,
the conditional distribution 	b�a fires

� is shifted away from 	b
�

only through the two neuron subnetworks involving a and b.
Subnetworks involving a neuron other than a ,b do come into
play within the higher-order terms.

D. Projections of the filtration

Given 	� and L�, we can write out the distribution
associated with any sequence of states. For example, if
we let S�t� denote the state of the system at time t, then
the probability that the system is in state j�0 at a randomly
chosen time, and in state j�1 during the next time step �i.e.,
a sequence of two states� can be written as P(S�t�= j�0 ,
S�t+1�= j�1)=Lj�1j�0

�
	 j�0

�, noting that there is no sum over

j�0. Similarly, the probability that the sequence of states
�j�0 , j�1 , . . . , j��� is observed is P(S�t+��= j�� for �=0, . . . ,�)

=Lj��j��−1

�
¯Lj�1j�0

�
	 j�0

�. The collection of distributions associated
with all state-sequences of arbitrary length is termed the “fil-
tration” of the network �28�. This filtration can be formally
expanded order by order as necessary using Eqs. �7� and
�13�.

By itself, the filtration is a cumbersome object. However,
elements of the filtration can be projected in various ways in
order to analyze higher-order correlations between neuronal
firing events in the network. Within this framework one of
the most straightforward projections of the filtration is the
projection onto “event-chain rates,” which are probabilities

that given sequences of firing events occur �4�. For example,
the event that a particular neuron a fires and a particular
neuron b fires � time steps later is referred to as a “two-
event-chain,” and the occurrence rate of this two-event-chain
�denoted by �a→�b�= P �b fires at time t+� �a fires at time t��
is given by

�a→�b� = 	
j�0,j�1,. . .,j��

��j��b
V,mLj��j��−1

�
¯ Lj�1j�0

� ��j0�a
V,m	 j�0

� ,

which can otherwise be written as

�a→�b� = �fb
T �

x�b

eT� · �L��� · �Fa
T �

x�a

Ix� · 	�. �17�

The occurrence rate of longer event chains, such as the prob-
ability that a particular neuron a fires, and a particular neuron
b fires � time steps later, and a particular neuron c fires ��
time steps afterwards �referred to as a three-event-chain, with
rate denoted by �a→�b→��c��, can also be projected out of
the filtration easily,

�a→�b→��c� = �fc
T �

x�c

eT� · �L����·

�Fb
T �

x�b

Ix� · �L��� · �Fa
T �

x�a

Ix� · 	�. �18�

More standard measurements of higher-order statistics, such
as two-point correlations and the occurrence rates of nearly
synchronous firing events, can be obtained by combining/
summing over various event-chain rates as necessary �e.g., a
two-point correlation between neurons a and b can be con-
structed via �a→�b�− �a��b��.

II. DISCRETE STATE EXAMPLES

There are several ways in which our formalism can be
used to analyze neuronal networks. By means of illustration,
we will use the subnetwork expansion to analyze the event-
chain rates �and, as a consequence, the neuronal correlations�
in a network of neurons similar to “current-based” integrate-
and-fire neurons �22�. We will also use the subnetwork ex-
pansion to address network-induced activity in networks of
neurons similar to “conductance-based” integrate-and-fire
neurons.

A. Analysis of a “current-based integrate-and-fire”
network model

For the purposes of this example we will consider a spe-
cific discrete-time finite-state neuronal model, in which each
neuron has only m states corresponding to the m voltages
Vj = j / �m−1� linearly spaced between 0 and 1 �with no no-
tion of conductance built in, equivalent to n=1 in Eq. �5��.
We construct this finite-state neuronal model so that it cap-
tures many of the qualitative features of the standard current-
based integrate-and-fire equation. Given a fixed voltage state
j, we define matrices

Aij � exp�− �Vj − Vje
−��2/�2��� ,
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Bij � exp�− �Vj − �Vje
−� + S��2/�2��� ,

where � ,� ,S are fixed, and both A and B are normalized to
have column sum 1. We set the state-transition matrix for a
single uncoupled neuron to be equal to

Lij��� = �1 − ��Aij + �Bij, for j � m ,

Lij = �i,1, for j = m ,

for inputs �� �0,1�. Thus, in the absence of any input a
neuron’s voltage more or less “decays” �with some probabi-
listic spread �� by a factor of e−�. However, an input of �
�0 implies that, with probability �, the neuron’s voltage
will receive a kick of size S in addition to decaying by a
factor of e−�. With this individual neuronal model, we con-
struct a network of N neurons by choosing a coupling matrix
�ab, a common input �Z=� for all neurons, and setting up
the full state-transition matrix via Eq. �5�. Thus, when any
one neuron in the network fires �i.e., transitions from state m
to state 1�, the other neurons to which it is connected receive
a transient increase in their input �over a single time step�,
which corresponds to a higher chance to receive a voltage
kick of size S. Note that when numerically simulating such a
system, one never needs to directly apply L� to the full state
of the system �indeed, as L� is mN�mN dimensional, this
operation cannot be carried out on most computers even for
moderate values of m and N�. Instead, each neuron can be
evolved step by step independently of the other neurons—
with the exception that, if a neuron starts out in state m, the
neurons to which it is connected are evolved �for that time
step� with the appropriately corrected input.

1. Analysis of firing rates

In order to demonstrate the subnetwork expansion’s appli-
cation to firing rates, we will first consider a randomly con-
nected network of such neurons �i.e., assume we are given a
fixed network for which �ab and �z have both been randomly
chosen �29��. Some neurons will fire more than others, and
we can use the subnetwork expansion to quantify how often
the various neurons will fire. For this situation we can use
Eq. �15� to reveal that the firing rate �a� of any neuron a is
given �up to second order� by

�a� = fa
T	a + 	

y

�ay�fy
T	y��fa

TGaLa�	a�

+ 	
x,y,a distinct

�ax�xy�fy
T	y��fa

TGaLa�	a��fx
TGxLx�	x�

+ 	
x,y,a distinct

�ax�ay�fx
T	x��fy

T	y��fa
TGaLa�GaLa�	a�

+ 	
x,a distinct

�ax�xa�fa
TGa��La� � fx

T�Gax�FRLaFT	a

� Lx�	x��� + 	
a,y distinct

�ay�ay�fa
TGa��fy

T

� La��Gya�FRLyF
T	y � La�	a��� + O��3� . �19�

Note that Lz�=0, and so only the first derivative L� appears in
this expression. Also note that, as fTL�=0 for this particular

neuronal model, there are no autapse terms in Eq. �19� �in-
deed, autapses have no effect on the dynamics of the sys-
tem�. We can plug in the connectivity matrix � and external
inputs � associated with any given network directly into Eq.
�19� to approximate the firing rates of each different neuron
in that network �note that the dependence on � is indicated
explicitly in Eq. �19�, whereas the terms Lz, Lz�, 	z, and Gz
implicitly depend on �z�. As a numerical test of this expan-
sion, we set N=8, m=12, �=0.1, �=0.025, S=0.5, and ran-
domly select a set of networks by randomly choosing matri-
ces � �each �ab drawn from a uniform distribution on the
interval �0.0,0.2�� and input � �each �a drawn from a uni-
form distribution on the interval �0.225,0.275��. For each of
these networks we measure the 2-norm of the difference be-
tween the analytically computed firing-rate vector �see Eq.
�19��, and the firing-rate vector measured from the full net-
work simulation �lasting 2�106 time steps�. In Fig. 4�c� we
plot the mean �1 standard deviation of this error on a log
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FIG. 4. �Color online� Application of the subnetwork expansion
to a current-based integrate-and-fire model. �a� The single-neuron
state-transition matrix Lij��� for the neuronal model described in
Sec. II A 1, with parameters m=12, �=0.1, �=0.025, and S=0.5.
The shade of the square in the ith row and jth column corresponds
to the probability of state j transitioning to state i in one time step
�given input �=0�. Note that if a neuron is in the final 12th state,
then that neuron fires, and is reset to the first state in the next time
step �Li,m=�i,1�. �b� The state- transition matrix Lij for values of
�� �0.2,1.0�. The higher the input �, the more likely it is that a
neuron will transition to the firing state i=m. �c� Error between
calculated and simulated firing rates. �d� We consider the “one-way-
ring” network �see Sec. II A 2�. Neurons are indicated by circles,

and short-range connections of strength �̄ are indicated by solid

black arrows. Weaker long-range connections of strength �̄2 are
indicated by gray lines/arrows. The network can be of arbitrary size,
as indicated by the ellipses. �e� The correlation between adjacent
neurons b and c in the ring can be calculated to first order, which is
sufficient to capture the true correlation obtained by numerical
simulation. �f� The contribution to �b→�c� coming from weak

O��̄2� long- range connections.
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scale. The error decreases as the order of the subnetwork
expansion increases. Moreover, the second-order approxima-
tions to the firing rates calculated via the subnetwork expan-
sion are very close to the measured values, even though the
individual �ab can be quite large �note that �ab=1 is the
maximum possible connectivity strength�.

2. Analysis of two-point correlations in a one-way-ring network

Next, in order to demonstrate the subnetwork expansion’s
application to correlated firing events, we will consider a
“one-way-ring” network with uniform drive to each of the
neurons in the network. Specifically, given N neurons, let
neuron zk be coupled to neuron zk+1 �i.e., �Zk�Zk

=0 unless

k�=k+1, in which case �Zk+1Zk
= �̄, where ZN+1=Z1�, and let

�zk
be constant independent of k �see Fig. 4�d��. If the cou-

pling coefficient �̄ is positive, one might expect that any
given firing event would subsequently give rise to more fir-
ing events “downstream.” More specifically, given that neu-
ron c is directly downstream from b in the one-way ring,

then one might expect that if �cb= �̄�0, then the two-event-
chain rate �b→�c� would be higher than �b��c� for some
values of �. Using Eq. �17� we can justify �and quantify� this
prediction, showing that for this class of networks

��b→�c� − �b��c��/�̄

= �fT
� fTL��Gbc�FRLFT	 � L�	�

− �fT	��fT	��fTGzL�	� + �fT	��fTL�−1L�	�

+ 	
�=1

�=�−1

�fTL�−�FRLFT	��fTL�−1L�	� + O��̄� .

�20�

This correlation is proportional to �̄ to first order. Note that
since the inputs �z are independent of z, the terms
Lz ,Lz� ,	z ,Gz ,Gzw are independent of z, w as well �as such,
the subscripts have been dropped when unnecessary�. By
evaluating Eq. �20� �using m=12, �=0.1, �=0.025, S=0.5,

�=0.25, and assuming �̄�0�, we can reveal that �b→�c� is
indeed markedly higher than �b��c�, but only for �=1,2 �see
Fig. 4�e��. For higher values of ��3, the correlation coeffi-

cient ��b→�c�− �b��c�� / �̄ decays quite quickly, becoming
negative for values of �=4,5, and falling within a few per-
cent of �b��c� for ��6. This first-order calculation is quite
representative of the correlation obtained by numerical simu-

lation �with N=8, and �̄=0.1�, as shown in Fig. 4�e�.
The subnetwork expansion can also be used to compute

the change in �b→�c� that would result if we were to intro-
duce weak ‘long-range’ connections into the ring network
described above. To clarify the presentation, assume that
multiple elements of the connectivity matrix �Zk�Zk

�with k�
�k+1� are set to various nonzero values, but are bounded in

magnitude by �̄2 �thus these additional connections are weak
in comparison to the connections which form the ring�. By

expanding Eq. �17� to O��̄3�, we find that the lowest-order
terms that involve the weak subnetwork are those which con-

tain a single weak connection. The influence of any particu-
lar weak connection �by on the event-chain rate �b→�c� in-
volves collections of terms with prefactors �by, �cb�by,
�ba�by, and �by�yx �where we have assumed that
x ,y ,a ,b ,c ,d are distinct; x connects strongly to y; a con-
nects strongly to b; and b connects strongly to c�. For ex-

ample, the O��̄2� term corresponding to �by �for y�b� has
the form �by�fT	��fT	��fTGL�	�, which is constant as a func-

tion of �, and the O��̄3� term corresponding to �cb�by is
given in Appendix A. When evaluated for this particular neu-
ronal model �with values of m, �, �, and S given above�,
these collections of third-order terms reveal that the influ-
ence of �by on the event-chain rate �b→�c� is nearly constant

as a function of �, implying that O�1 / �̄� multiple positive
weak long-range connections to b can substantially increase
�b→�c�, but will not substantially increase the correlation
�b→�c�− �b��c�. This fact can be verified by numerical simu-

lation �with N=8, �̄=0.1, and the probability of weak con-
nections p=0.25�, see Fig. 4�f�. In addition, by analyzing
both �a�, �b�, �c�, �a→�b�, and �b→�c� �via Eq. �19� and
Eq. �20��, it can also be shown that multiple positive weak

long-range connections to b will �to third order in �̄� in-
crease �a→�b� and �b→�c� by about the same amount �more
or less independent of ��, while increasing �b� substantially,
and increasing �c� only marginally �again, this fact can be
verified by simulation�.

B. Analysis of a “conductance-based integrate-and-fire”
network model

For the purposes of this example we will consider a spe-
cific discrete-time finite-state neuronal model, which is
qualitatively similar to the conductance-based integrate-and-
fire equations often used in neuroscience �22,26�. Given a
network of neurons, the integrate-and-fire equations are a
system of ODEs which prescribe the evolution of each model
“point-neuron,” with state variables Va�t� and ga�t�,

d

dt
Va = − gLVa − ga�Va − VEX� = − �ga + gL��Va − VS�ga�� ,

d

dt
ga = − ga/�G + Ia

in + 	
b

�ab��t − tk
b� , �21�

where gL, VEX, and �G are constants, the slaving voltage
VS�g�= �gVEX� / �g+gL�, and the input Ia

in is fixed. The voltage
Va and conductance ga of any neuron a evolve continuously
under Eq. �21�, until Va=VT, at which point neuron a fires,
and Va is reset to VR=0. The time tk

b is the kth spiketime of
neuron b in the network.

To mimic this system of ODEs, we choose a fixed con-
stant for dt, and design a discrete-time neuronal model for
which each neuron has m voltage states corresponding to the
voltages VjV = jV / �m−1� linearly spaced between 0 and 1,
and n conductance states corresponding to the n conduc-
tances gjG =gmaxjG / �n−1� linearly spaced between 0 and
gmax. For each state j= �jV , jG�, we define Vj

next and gj
next as

follows:
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gj
next��� = gjG exp�− dt/�G� + �

�G

dt
�1 − exp�− dt/�G�� ,

Vj
next��� = VS�gj

next� + �VjV − VS�gj
next��e−dt�gj

next+gL�,

for any given input �. We set the state-transition probability
P �i at time t+1 � j at time t� for a single uncoupled neuron to
be equal to

Lij��� � e−�ViV−Vj
next�/�Ve−�giG−gj

next�/�G, for jV � m ,

Lij��� � �iV,1 exp�− �giG − gj
next�/�G�, for jV = m ,

where L is normalized to have column sums equal to 1. Us-
ing this single neuronal model, we define the full state-
transition matrix �for any network� via Eq. �5�. Note that for
the correct ordering of limits m ,n→, �V ,�G ,dt→0, this
discrete system is equivalent to the conductance-based
integrate-and-fire equations with Iin=0 �in this discrete sys-
tem Iin is not explicitly modeled�. In practice, the discrete
system described above with m�8 and n�8 can be used to
construct networks capable of reproducing many qualitative
features associated with integrate-and-fire-type dynamics,
such as nonlinear gain, bistability, hysteresis, spontaneous
synchronization, and oscillations �20,23,24,27�.

1. Analysis of autocorrelations

Because of the internal conductance states of the neuronal
model, the autapse terms in the associated subnetwork ex-
pansion are nonzero. These autapse terms influence the au-
tocorrelations associated with any particular network. As an
example, we consider randomly constructed networks for
which gL=1 /20, �g=5, VEX=14 /3, m=8, n=8, gmax= 1

8 , dt

=1, �V= 1
4m , �G=

gmax

4n , and �k=�bkg=0.001 is uniform. With
this fixed input, it is easy to calculate �via Eq. �15�� that the
firing rate �a� of an uncoupled neuron a is �a��0��0.0045
�i.e., an uncoupled neuron fires about once every 200 steps
on average�. It can also be shown �via Eq. �17�� that the
event-chain rate �a→�a� is given by

�a→�a� = �fa
TLa

�FT	a� + �aa�fa
TLa

�FTGaFRLa�F
T	a�

+ 	
�=1

�=�

�aa�fa
TLa

�−�FRLa�Fa
TLa

�−1FT	a�

+ 	
d,a distinct

	
�=1

�=�

�ad�fa
TLa

�−�La�La
�−1FT	a��fd

T	d�

+ 	
d,a distinct

�ad�fa
TLa

�FTGaLa�	a��fd
T	d� + O��2� .

�22�

Notably, even these first-order terms reveal that the effect of
any coupling on the event-chain rate �a→�a� is quite large.

Let us first consider the autapse terms in Eq. �22� asso-
ciated with the coupling parameter �aa. These terms are
negligible ��10−7� for values of ��5, but are very large
��0.014� for values of �=8,9. This term �combined with the
negligible term fa

TLa
�FT	a� can be interpreted to imply that

the presence of a weak autapse will give rise to an autocor-
relation that peaks at around eight time steps. This prediction
is consistent with numerical simulations of this system for
�aa=0.0015 �see Fig. 5�. Furthermore, the first-order terms
in Eq. �22� corresponding to connections �ad �with d ,a dis-
tinct� also contribute most to the rate �a→�a� when �=8,9,
as is consistent with numerical simulations �data not shown�.
Thus, for this example, the first-order subnetwork expansion
is sufficient to capture the autocorrelation structure of the
network dynamics.

2. Analysis of waves in a two-way-ring network

Next we will demonstrate an application of the subnet-
work expansion to the analysis of wavelike activity. We will
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FIG. 5. �Color online� Application of the subnetwork expansion
to a conductance-based integrate-and-fire model. �Upper left� The
single-neuron state-transition matrix Lij��� for the neuronal model
described in Sec. II B 1, with �=0.0192. The shade of the square in
the ith row and jth column corresponds to the probability of state j
transitioning to state i in one time step �given input �=0�. Note that
if a neuron is in state �m , jG�, then that neuron fires, and is reset in
the next time step. The only nonzero entries of FRLFT are given by
the upper right n�n block of L, which corresponds to neurons
transitioning across the voltage threshold. �Upper center� The state-
transition matrix Lij for �=0.064. �Upper right� We simulate a
single neuron with an autapse of strength �aa=0.0125, and measure
the autocorrelation �dashed line�. The structure of this autocorrela-
tion can be predicted �solid line� by the first-order contribution to
�a→�a� coming from the autapse �aa. �Lower Left� In order to
illustrate an application of the subnetwork expansion to network
dynamics, we consider the “two-way-ring” network, composed of
neurons with uniform input � and parameters given in Sec. II B 2.
Neurons are indicated by circles, and short-range connections of

strength �̄ are indicated by solid black arrows. The network can be
of arbitrary size, as indicated by the ellipses. �Lower right� One way
to quantify the wavelike nature of the network’s dynamics is to
measure the quantity �b→1c→1d�− �c→1d→1b�, which is propor-

tional to �̄ up to first order, and is a function of the input �. As
shown in the graph, this particular indicator of wavelike dynamics
has a maximum for ��0.03. Numerical simulation of this two-

way-ring network �for N=128 and various values of �̄�0.0175�
confirm this analysis for �̄�0.004.
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consider a “two-way-ring” network. Specifically, given N
neurons, let neuron zk be coupled to neuron zk�1 �i.e.,

�Zk�Zk
=0 unless k�=k�1, in which case �Zk�1Zk

= �̄, where

ZN+1=Z1 and Z0=ZN�, and let �zk
be constant �independent of

k�. One important feature of such networks is that certain
dynamic regimes give rise to wavelike phenomena �note that
the dynamic regime will be a function of the architectural

parameters �̄ ,�, as well as the neuronal parameters gL, �g,
VEX, m, n, gmax, dt, �V, and �G�.

The concept of waves is not that well defined for pulse-
coupled systems since there is not generally a straightfor-
ward notion of spatial proximity for nodes in a graph �30�.
However, it is possible to use event-chains to posit a reason-
able definition of waves for this particular class of networks.
For clarity, let us label neurons �Z1 ,Z2 ,Z3 ,Z4 ,Z5� as
�a ,b ,c ,d ,e�. If the event-chain rate �b→�c→�d� is signifi-
cantly higher than the event-chain rate �c→�d→�b� for a
range of �, then it is reasonable to assume that sequences of
firing events propagate through the network preferentially in
the direction of increasing neuronal index or decreasing neu-
ronal index. Note that, due to the symmetry of this simple
network, the event-chain rate �b→�c→�d� must equal the
rate �d→�c→�b�, and so any long-time observation of the
system should reveal equal rates of wave propagation in ei-

ther direction. Obviously, if �̄=0, then both �b→�c→�d� and
�c→�d→�b� are equal to �fT	�3, and there will be no obvious
wavefronts within this uncoupled system �since the neuronal
model and input � are the same for each of the neurons, we
omit subscripts�. Using Eq. �18� we can compute the differ-
ence �b→�c→�d�− �c→�d→�b�. This difference is propor-

tional to �̄ to first order, and is a function of �, as well as �
and the various neuronal parameters. As a specific case �see
Appendix A�, we can consider the difference ��b→1c→1d�
− �c→1d→1b�� / �̄ as a function of �, with uniform drive to
each of the neurons in the network, and the rest of the neu-
ronal parameters fixed as: gL=1 /20, �g=15, VEX=14 /3, m

=2, n=3, gmax= 1
4 , dt=1, �V= 1

4m , and �G=
gmax

4n . As shown in
Fig. 5, there is a critical �crit�0.03 for which this difference

is maximal. Numerical simulations �with �̄�0.0175 and N
=128� confirm that this analysis is quantitatively accurate for

�̄�0.004.

III. CONTINUOUS-TIME INFINITE-STATE
NEURONAL MODELS

This subnetwork expansion can be formally extended to
infinite-state continuous-time systems. For purposes of illus-
tration, consider the term �fTGzL�	� in Eq. �16�. In the
infinite-state continuous-time limit, the vector 	 jVjG becomes
a continuous distribution 	�V ,g�, the state-transition matrix
L becomes an infinitesimal state-transition operator L, the
derivative L� becomes a differential operator L�, the operator
G= �I−L�−1 becomes a boundary-value problem G, and the
operator fT becomes an integral of the probability flux over
the V=VT boundary of the domain. For example, the infini-
tesimal state-transition operator L associated with an un-
coupled neuron obeying the integrate-and-fire equations �Eq.
�21�� is given by

L�V2,g2�,�V1,g1���,Iin�

= limh→0 ���1 − �V1,VT
��V1 + h�− gLV1 − g1�V1 − VEX���

+ �V1,VT
VR − V2� · ��g1 + h�− g1/�G + Iin� + � − g2� ,

where the parameter � accounts for the pulse coupling. The
operator �I−L�0, Iin�� is proportional to the differential op-
erator

�I − L�0,Iin��	�V,g� �
d

dt
	�V,g�

= − �VJV�V,g,	� − �gJg�V,g,Iin,	�

+ ��V − VR�JV�VT,g,	� ,

where the fluxes JV ,Jg are given by

JV�V,g,	� = �− gLV − g�V − VEX��	, for V� VR,

JV�V,g,	� = 0, for V = VR,

Jg�V,g,Iin,	� = �− g/�G + Iin�	 .

The derivative L� can be interpreted as

d

d�
L�V2,g2�,�V1,g1��0,Iin�

= limh→0 ���1 − �V1,VT
��V1 + h�− gLV1 − g1�V1 − VEX���

+ �V1,VT
VR − V2� · limh�→0

1

h�
���g1 + h�− g1/�G + Iin�

+ h� − g2� − ��g1 + h�− g1/�G + Iin� − g2�� .

With this interpretation, the distribution L�� is proportional
to − d

dg�. Note that, since the distribution 	�V ,g� tends to 0 as
g→0 and as g→, the integral �VR

VT�0
L�	dgdV=0 as re-

quired. The distribution 	̂=GL�	 satisfies the relationships

�I − L�0,Iin��	̂�V,g� = L�	�V,g� ,

�
VR

VT �
0



	̂dgdV = 0,

and the boundary integral fT	̂ is given by

fT	̂ = �
0



JV�VT,g, 	̂�dg .

Infinite state examples

Here we analyze two different types of autapse-free ran-
dom networks: �type-A� randomly constructed networks with
sparsity coefficient p and �type-B� all-to-all connected net-
works with stochastic post-synaptic connection probability p
per firing event �i.e., a “failure coefficient” of �1− p��. These
networks function differently, yet many current methods for
analyzing statistically homogeneous random networks can-
not be used to differentiate the dynamics exhibited by these
two types of networks �10–12,16,31�. Nevertheless, these dy-
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namical differences can be readily analyzed by appealing to
our subnetwork expansion. A network of type-A will be de-
termined by setting the elements of the connectivity matrix

�ab �with a�b� equal to 0 or �̄, with probability �1− p� and
p, respectively. A network of type-B will be all-to-all con-
nected �with no autapses�, and will have a modified state-
transition matrix to account for the fact that each neuron
either ignores or receives each incoming network-generated
firing event with probability �1− p� and p, respectively. Note
that, obviously, autapses would strongly differentiate these
two networks—a type-A network neuron which has an au-
tapse will consistently affect itself, whereas a type-B net-
work neuron with an autapse will only affect itself p of the
time. Thus, we assume for now that there are no autapses
��aa=0, ∀a�.

If we consider the type-B network, one can show that the
operators L� ,L� , . . . are each proportional to p, and are equal
to the corresponding operators in the type-A network only
when p=1. There will be neurons in the type-A network
which receive more synaptic input than others. Those neu-
rons will in fact fire more often. In general there will be a
distribution of firing rates across the neuronal population in a
type-A network. Note, however, that every neuron in a
type-B network has exactly the same firing rate. Up to first
order, the mean of the firing-rate distribution of type-A net-
works �sampled across many random networks� will be equal
to the mean firing rate exhibited by the type-B network. In-
deed, for any neuron b one can show

�b��0� + �b��1� = �fT	� + 	
b,w distinct

�bw�fTGL�	��fT	� .

Thus, on average, a typical type-A neuron receives only
p�N−1� of the �bw terms, each at full strength, whereas a
type-B neuron receives all N−1 coupling terms, each at p
strength �due to the fact that L� is proportional to p in a
type-B network�. Notably however, the second-order contri-
bution to �b�, given by

�b��2� = 	
z,w,y distinct

�zw�zy�fTGL�GL�	��fT	��fT	�

+ 	
z,w,y distinct

�zw�zy� 1

2!
fTGL�	
�fT	��fT	�

+ 	
z,w,y distinct

�zw�wy�fTGL�	��fTGL�	��fT	�

+ 	
z,w distinct

�zw�zw� 1

2!
fTGL�	
�fT	�

+ 	
z,w distinct

�zw�zw�fTGz�L� � fT�Gzw�L�	

� FRLFT	�� + 	
z,w distinct

�zw�wz�fTGz�L�

� fT�Gzw�FRLFT	 � L�	�� ,

is different for type-A and type-B networks. Specifically, the
typical type-A neuron receives p2�N−1��N−2� of the follow-
ing terms:

	
z,w,y distinct

�zw�zy� 1

2!
fTGL�	


z
�fT	�w�fT	�y ,

each at full strength, whereas a type-B neuron receives �N
−1��N−2� of these terms at strength p. Similarly, a type-A
neuron receives p�N−1� of the following terms:

	
z,w distinct

�zw�zw�fz
TGz�Lz� � fw

T�Gzw�Lz�	z � FLw	w�� ,

each at full strength, whereas a type-B neuron receives �N
−1� such terms at strength p2. Thus, the subnetwork expan-
sion can be used to show that the mean of the firing-rate
distribution of type-A networks is not equal to the mean
firing rate of type-B networks. Moreover, by computing the
appropriate terms, we can predict �to second order� the
firing-rate distribution of neurons within type-A networks, as
well as the firing rate of neurons within type-B networks �see
Fig. 6�. This same type of analysis can also be used to inves-
tigate higher-order correlations within these networks.

IV. CONCLUSIONS

This subnetwork expansion provides a systematic step to-
wards an understanding of the relationships between the ar-
chitecture of a network and the dynamics of that network.
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FIG. 6. �Color online� The various panels show the histograms
of time-averaged neuronal firing rates produced by type-A random
networks with p=0.5 �see text� as calculated to second-order using
our subnetwork expansion �solid� and via simulation �dotted�. The
shaded arrowheads �blue and red online� below the firing-rate axis
indicate the calculated and simulated time-averaged neuronal firing
rates produced by type-B networks with p=0.5. Each random net-
work is composed of N=8 conductance-based integrate-and-fire
neurons obeying Eq. �21�, with GL=0.05 ms−1, VEX=14 /3, �G

=2.0 ms, with each Ia
in given by Ia

in�t�= f�k��t− ta,k
in �, with strength

f =0.0365 and each set of feedforward input spikes �ta,k
in �k drawn

from an independent Poisson process with rate 500 Hz. Note that

the theory matches the simulations very well for �̄�0.04.
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This framework can provide substantial insight into the dy-
namics of many commonly studied network architectures.
Ultimately, this framework provides a map �of chosen order�
between the specific architectural properties of a network,
and various projections of the network dynamics. If this map
can be approximately inverted �e.g., when the expansion or-
der is low�, then the architecture of the network can be de-
duced by observing/measuring various statistical features of
the dynamics. For example, by expanding the firing rates and
two-event chains out to second order, we can construct a
quadratic map between the connectivity matrix � and the
correlation matrix Cab���= �a→�b�− �a��b� for fixed �. The
inversion of this map corresponds to a “best guess” for the
connectivity matrix given the observed correlations. Note
that this procedure does not require perturbation of the sys-
tem, and may potentially provide a useful analytical tool
which can complement noninvasive experiments.

We note that computation of many of the higher-order
terms involved in any diagrammatic expansion may be diffi-
cult, and may require either a numerical solution of the as-
sociated population-dynamics equations �32�, or a numerical
simulation of smaller networks with similar high-order
terms. However, once the terms in the expansion are com-
puted, they can be used to dissect the full network, and as-
sociate causality with each particular class of subnetwork. In
addition, the diagrammatic terms can be used to analyze a

range of network connectivities by recomputing the appro-
priate sum derived from Eq. �13�.

Finally, while the subnetwork expansion detailed within
this paper involves an expansion around the uncoupled dy-
namic regime �i.e., a weak-coupling expansion in terms of �
around �=0�, the same formal structure can be applied to-
wards an expansion around another dynamic regime for
which the equilibrium distribution and state-transition matrix
are known. For example, if the network contains many neu-
rons, and we make the assumption that the coupling matrix is
all-to-all, and that the coupling is weak, the equilibrium state
can be approximated via kinetic equations derived in the
mean-field limit �13,15�. The full network dynamics can then
be approximated using an expansion around the state-
transition operator associated with this mean-field limit.
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APPENDIX A: VARIOUS EXPANSIONS

The contribution to �b→�c� from the term �cb�by in the
current-based one-way ring network described in Sec. II A 2

is given by �up to third order in �̄�

�cb�by��fTGL�	��fTL�−2L�	��fT	� + 	
�1+�2+�3=�−3,

�3�0

�fTL�1L�	��fTL�2L�L�3FRLFT	��fT	� + 	
�1+�2=�−2,

�2�0

�fTL�2FRLFTGL�	�

��fTL�1L�	��fT	� + �fT	���fTL� � fT�Gba�L�	 � FRLFTGL�	�� + �fT	���fT
� fTL��Gab�L� � L�Gab�FRLFT	 � L�	�� .

The two-event-chain rates �a→�b� for the conductance-based system described in Sec. II B are given �up to first-order� by

�a→�b� = �a��b� + �ba	�=1

�=�
�fb

TLb
�−�Lb�	b��fa

TLa
�−1FT	a� + �ab · �fa

T
� fb

TL��Gab�La�	a � FRLbFT	b�

+ �ba · �fb
TL� � fa

T�Gba�Lb�	b � FRLaFT	a� ,

in the case that a and b are distinct.
The difference between the three-event-chain rates �b→1c→1d� and �c→1d→1b� for the two-way-ring network described in

Sec. II is given �up to first-order� by

��b→1c→1d� − �c→1d→1b��/�̄ = �fTL�	��fT	��fT	� − �fTL�	��fT	��fTLFT	� − �fTLL�	��fT	��fT	�

+ �fTLFRLFT	��fTL�	��fT	� − �fT	��fTL�	��fT	��fT	� − �fT	��fTLGzL�	��fT	��fT	�

+ �fT	��fT	��fTGzL�	��fT	� + �fTLL � fTL�Gzw�L�	 � FRLFT	��fT	�

− �fTLL � fT�Gzw�L�	 � FRLFT	��fT	� + �fTL � fTLL�Gzw�L�	 � FRLFT	��fT	�

− �fT
� fTLL�Gzw�L�	 � FRLFT	��fT	� ,

where we have omitted subscripts since the internal dynamics associated with every neuron in the network is identical �z and
w are dummy variables indicating the dimension of the G operator�.
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APPENDIX B: A NOTE ON THE CALCULATION
OF G{zj}

for �{zj}��1

Here we address one important technical point relating to
the actual computation of the terms in the subnetwork expan-
sion. The operator G�zj�

= �I− �zj
Lzj

�−1 is s��zj���s��zj�� dimen-
sional, which raises numerical computation issues even for
low values of ��zj���2. For example, consider the operator
Gab appearing in the terms Gab�L�	� FRLFT	� associated
with the second-order expansion of firing rate. Even for
moderate values of s�10^3 �or, equivalently, a discretiza-
tion of a continuous-time problem involving 10^3 grid-
points�, direct computation of Gab requires manipulating a
10^6�10^6 matrix, and direct computation of higher-order
terms �such as Gabc� becomes practically impossible. Fortu-
nately, the terms arising in the subnetwork expansion have
a specific structure—namely that every term involving G
only incorporates the operators G, FR, FT, and L�M� �for vari-
ous M�. Thus, if one were able to express Gab as the direct
product of two single-neuron operators �say, Gab�A � B�,
then we could successfully reduce every operation involving

Gab down to the product of single-neuron operations �e.g.,
one could represent Gab�L� � L�Gab�FRLFT	� L�	� as
�AL�AFRLFT	��BLBL�	�, which only involves operators of
size s�s�. Unfortunately, this is not quite possible since Gab
has no representation as the direct product of two single-
neuron operators. However, we can express Gab as a rapidly
converging series of direct products of single-neuron opera-
tors.

Using the notation of Sec. I B, we first apply the coordi-
nate transformation

�I − �a � �b�−1 = ��a
−1

� �b
−1�Gab��a � �b� .

We have that �ab=diag(�I−�a ��b�−1) is an s2-element vec-
tor such that ��1,1�

ab =0, and ��i,j�
ab = �1−�i

a� j
b�−1 as long as ei-

ther i�1 or j�1. Letting �=��i,j�
ab −�i

a1 j −1i� j
b �where 1 is

the s-element unit vector with first entry 1�, we note that
��i,j�= �1−�i0��1−� j0��1−�i

a� j
b�−1. Note that ��Cs2

is an
s2-element vector, diag����Cs2�s2

is an s2�s2 matrix, and

Gab = Ga � �	beb
T� + �	aea

T� � Gb

+ ��a � �b�diag�����a
−1

� �b
−1� .

As the diagonal matrix diag��� only has s2 relevant entries,
there is another natural way to view diag���—namely as an
s�s matrix ���Cs�s, where �i,j� =��i,j�. A key observation
is that any representation of diag��� in terms of a sum of
direct products of s�s diagonal matrices is entirely equiva-
lent to a representation of � in terms of a sum of direct

products of s�1 vectors, which is again entirely equivalent
to a representation of �� in terms of a sum of outer products
of s�1 vectors. More specifically, given any approximation
of �� in terms of a sum of outer products of s-element vec-
tors ����,  ����Cs,

�i,j� = �i
�1�� j

�1��� + �i
�2�� j

�2��� + ¯ ,

we can immediately write

��i,j� = �i
�1� ̄ j

�1� + �i
�2� ̄ j

�2� + ¯ ,

which corresponds to a representation of Gab,

Gab = Ga � �	beb
T� + �	aea

T� � Gb + 	
�

��a diag�������a
−1�

� ��b diag� ̄�����b
−1� .

A straightforward approach is to choose ���� , ��� for each �
so that

�� − 	
l=1

l=�

��l�
�  �l��

2

� ��� − 	
l=1

l=�

��l�� �l����
2

is as small as possible. One way to do this is to iteratively
solve the following eigenvalue problems:

�̃i,j = �i,j� − 	
l=1

l=�−1

�i
�l�� j

�l���,

���������

 ��� � = � �̃

�̃�
������

 ��� � , �B1�

where, at each step, �̃ is an s�s matrix formed from the
elements of ��−	l=1

l=�−1��l�� �l���. With this formulation the
largest eigenvalue ����= ������2= � ����2. This procedure is
identical to constructing a singular value decomposition of
�� �33�—indeed, ���� and  ��� are parallel to the left and
right singular vectors of ��, with squared norms equal to the
corresponding singular values of ��. If Lz=Lw �i.e., the neu-
rons z and w are identical�, then ����= ���, and the eigen-

value problem in Eq. �B1� reduces to ��������= �̃����. In

practice this process converges very quickly, and ��̃� typi-
cally decreases by an order of magnitude with every itera-
tion. For instance, for the discrete-state examples given in
this paper, Gab can be represented to double-precision accu-
racy by a sum of !4 such direct products. Similarly, for a
continuous-time infinite-state current-based integrate-and-
fire system, Gab can be represented to double-precision ac-
curacy by a sum of �16 such direct products �even for nu-
merical discretizations which incorporate far more than 16
voltage states per neuron�.

DIAGRAMMATIC EXPANSION OF PULSE-COUPLED… PHYSICAL REVIEW E 80, 036101 �2009�

036101-15



�1� W. McCulloch and W. Pitts, Bull. Math. Biophys. 7, 115
�1943�.

�2� B. Quenet, R. Dubois, S. Sirapian, G. Dreyfus, and D. Horn,
Biosystems 67, 203 �2002�.

�3� D. Stroock, An Introduction to Markov Processes �Springer,
New York, 2005�.

�4� A. Rangan, D. Cai, and D. McLaughlin, Proc. Natl. Acad. Sci.
U.S.A. 105, 10990 �2008�.

�5� J. Hopfield, Proc. Natl. Acad. Sci. U.S.A. 79, 2554 �1982�.
�6� J. Hopfield, Proc. Natl. Acad. Sci. U.S.A. 81, 3088 �1984�.
�7� A. Arieli, D. Shoham, R. Hildesheim, and A. Grinvald, J. Neu-

rophysiol. 73, 2072 �1995�.
�8� A. Arieli, A. Sterkin, A. Grinvald, and A. Aertsen, Science

273, 1868 �1996�.
�9� M. Tsodyks, T. Kenet, A. Grinvald, and A. Arieli, Science

286, 1943 �1999�.
�10� B. Knight, J. Gen. Physiol. 59, 734 �1972�.
�11� L. F. Abbott and C. van Vreeswijk, Phys. Rev. E 48, 1483

�1993�.
�12� B. Knight, D. Manin, and L. Sirovich, in Symposium on Ro-

botics and Cybernetics: Computational Engineering in Sys-
tems Applications, edited by E. Gerf �Cite Scientifique, Lille,
France, 1996�.

�13� D. Nykamp and D. Tranchina, J. Comput. Neurosci. 8, 19
�2000�.

�14� L. Sirovich, A. Omurtag, and B. Knight, SIAM J. Appl. Math.
60, 2009 �2000�.

�15� D. Cai, L. Tao, M. Shelley, and D. Mclaughlin, Proc. Natl.
Acad. Sci. U.S.A. 101, 7757 �2004�.

�16� W. Gerstner, Phys. Rev. E 51, 738 �1995�.
�17� M. A. Buice and J. D. Cowan, Phys. Rev. E 75, 051919

�2007�.
�18� M. A. Buice and C. C. Chow, Phys. Rev. E 76, 031118 �2007�.
�19� D. Hansel, G. Mato, C. Meunier, and L. Neltner, Neural Com-

put. 10, 467 �1998�.
�20� N. Brunel and V. Hakim, Neural Comput. 11, 1621 �1999�.
�21� G. D. Smith, C. Cox, S. Sherman, and J. Rinzel, J. Neuro-

physiol. 83, 588 �2000�.
�22� P. Dayan and L. Abbott, Theoretical Neuroscience �MIT press,

Cambridge, MA, 2001�.
�23� N. Fourcaud and N. Brunel, Neural Comput. 14, 2057 �2002�.
�24� A. Casti, A. Omurtag, A. Sornborger, E. Kaplan, B. Knight, J.

Victor, and L. Sirovich, Neural Comput. 14, 957 �2002�.
�25� A. Rauch, G. LaCamera, H. Luscher, W. Senn, and S. Fusi, J.

Neurophysiol. 90, 1598 �2003�.
�26� T. Vogels and L. Abbott, J. Neurosci. 25, 10786 �2005�.
�27� D. French and E. Gruenstein, J. Comput. Neurosci. 21, 227

�2006�.
�28� B. Oksendal, Stochastic Differential Equations: An Introduc-

tion with Applications �Springer, Berlin, 2003�.
�29� P. Erdos and A. Renyi, Publ. Math. �Debrecen� 6, 290 �1959�.
�30� J. Bondy and U. Murty, Graph Theory with Applications

�Elsevier, New York, 1976�.
�31� A. V. Rangan and D. Cai, Phys. Rev. Lett. 96, 178101 �2006�.
�32� A. Rangan and D. Cai, J. Comput. Neurosci. 22, 81 �2007�.
�33� L. Trefethen and D. Bau, Numerical Linear Algebra �SIAM,

Philadelphia, 1997�.

AADITYA V. RANGAN PHYSICAL REVIEW E 80, 036101 �2009�

036101-16


